Analytic approach to the thermal Casimir force between metal and dielectric

نویسندگان

  • B. Geyer
  • G. L. Klimchitskaya
چکیده

The analytic asymptotic expressions for the Casimir free energy, pressure and entropy at low temperature in the configuration of one metal and one dielectric plate are obtained. For this purpose we develop the perturbation theory in a small parameter proportional to the product of the separation between the plates and the temperature. This is done using both the simplified model of an ideal metal and of a dielectric with constant dielectric permittivity and for the realistic case of the metal and dielectric with frequency-dependent dielectric permittivities. The analytic expressions for all related physical quantities at high temperature are also provided. The obtained analytic results are compared with numerical computations and good agreement is found. We demonstrate for the first time that the Lifshitz theory, when applied to the configuration of metal-dielectric, satisfies the requirements of thermodynamics if the static dielectric permittivity of a dielectric plate is finite. If it is infinitely large, the Lifshitz formula is shown to violate the Nernst heat theorem. The implications of these results for the thermal quantum field theory in Matsubara formulation and for the recent measurements of the Casimir force between metal and semiconductor surfaces are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New approach to the thermal Casimir force between real metals

The new approach to the theoretical description of the thermal Casimir force between real metals is presented. It uses the plasma-like dielectric permittivity that takes into account the interband transitions of core electrons. This permittivity precisely satisfies the Kramers-Kronig relations. The respective Casimir entropy is positive and vanishes at zero temperature in accordance with the Ne...

متن کامل

Recent Results on Thermal Casimir Force between Dielectrics and Related Problems

We review recent results obtained in the physics of the thermal Casimir force acting between two dielectrics, dielectric and metal, and between metal and semiconductor. The detailed derivation for the low-temperature behavior of the Casimir free energy, pressure and entropy in the configuration of two real dielectric plates is presented. For dielectrics with finite static dielectric permittivit...

متن کامل

Evanescent character of the repulsive thermal Casimir force

The physical origin of the negative thermal correction to the Casimir force between metals is clarified. For this purpose the asymptotic behavior of the thermal Casimir force is analyzed at large and small distances in the real frequency representation. Contributions from propagating and evanescent waves are considered separately. At large distances they cancel each other in substantial degree ...

متن کامل

Comment on “Surface-impedance approach solves problems with the thermal Casimir force between real metals”

In a recent paper Geyer, Klimchitskaya, and Mostepanenko [Phys. Rev. A 67, 062102 (2003)] proposed the final solution of the problem of temperature correction to the Casimir force between real metals. The basic idea was that one cannot use the dielectric permittivity in the frequency region where a real current may arise leading to Joule heating of the metal. Instead, the surface impedance appr...

متن کامل

Casimir force between dispersive magnetodielectrics

We extend our approach to the Casimir effect between absorbing dielectric multilayers [M. S. Tomaš, Phys. Rev. A 66, 052103 (2002)] to magnetodielectric systems. The resulting expression for the force is used to numerically explore the effect of the medium dispersion on the attractive/repulsive force in a metal-magnetodielectric system described by the Drude-Lorentz permittivities and permeabil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008